Synthesis and characterization of electrospun molybdenum dioxide–carbon nanofibers as sulfur matrix additives for rechargeable lithium–sulfur battery applications
نویسندگان
چکیده
One-dimensional molybdenum dioxide-carbon nanofibers (MoO2-CNFs) were prepared using an electrospinning technique followed by calcination, using sol-gel precursors and polyacrylonitrile (PAN) as a processing aid. The resulting samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, Brunauer-Emmet-Teller (BET) surface area measurements, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). MoO2-CNFs with an average diameter of 425-575 nm obtained after heat treatment were used as a matrix to prepare sulfur/MoO2-CNF cathodes for lithium-sulfur (Li-S) batteries. The polysulfide adsorption and electrochemical performance tests demonstrated that MoO2-CNFs did not only act as polysulfide reservoirs to alleviate the shuttle effect, but also improve the electrochemical reaction kinetics during the charge-discharge processes. The effect of MoO2-CNF heat treatment on the cycle performance of sulfur/MoO2-CNFs electrodes was examined, and the data showed that MoO2-CNFs calcined at 850 °C delivered optimal performance with an initial capacity of 1095 mAh g-1 and 860 mAh g-1 after 50 cycles. The results demonstrated that sulfur/MoO2-CNF composites display a remarkably high lithium-ion diffusion coefficient, low interfacial resistance and much better electrochemical performance than pristine sulfur cathodes.
منابع مشابه
Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries.
Sulfur has a high specific capacity of 1673 mAh/g as lithium battery cathodes, but its rapid capacity fading due to polysulfides dissolution presents a significant challenge for practical applications. Here we report a hollow carbon nanofiber-encapsulated sulfur cathode for effective trapping of polysulfides and demonstrate experimentally high specific capacity and excellent electrochemical cyc...
متن کاملHigh-efficiency and high-power rechargeable lithium–sulfur dioxide batteries exploiting conventional carbonate-based electrolytes
Shedding new light on conventional batteries sometimes inspires a chemistry adoptable for rechargeable batteries. Recently, the primary lithium-sulfur dioxide battery, which offers a high energy density and long shelf-life, is successfully renewed as a promising rechargeable system exhibiting small polarization and good reversibility. Here, we demonstrate for the first time that reversible oper...
متن کاملScalable synthesis of a sulfur nanosponge cathode for a lithium–sulfur battery with improved cyclability
Although lithium–sulfur batteries exhibit a high initial capacity, production costs and lack of cyclability are major limitations. Here we report a liquid-based, low-cost and reliable synthesis method of a lithium–sulfur composite cathode with improved cyclability. An open network of Conductive Carbon Black nanoparticles (Cnet) is infused with a sulfur network (Snet) to form sponge-like network...
متن کاملGraphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability.
We report the synthesis of a graphene-sulfur composite material by wrapping poly(ethylene glycol) (PEG) coated submicrometer sulfur particles with mildly oxidized graphene oxide sheets decorated by carbon black nanoparticles. The PEG and graphene coating layers are important to accommodating volume expansion of the coated sulfur particles during discharge, trapping soluble polysulfide intermedi...
متن کاملSulfurized Carbon: A Class of Cathode Materials for High Performance Lithium/Sulfur Batteries
*Correspondence: Sheng S. Zhang, Electrochemistry Branch, RDRL-SED-C, Sensors and Electron Devices Directorate, U.S. Army Research Laboratory, Adelphi, MD 20783-1197, USA e-mail: [email protected]; [email protected] Liquid electrolyte lithium/sulfur (Li/S) batteries cannot come into practical applications because of many problems such as low energy efficiency, short cycle life, and...
متن کامل